If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-30t+50=0
a = 1; b = -30; c = +50;
Δ = b2-4ac
Δ = -302-4·1·50
Δ = 700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{700}=\sqrt{100*7}=\sqrt{100}*\sqrt{7}=10\sqrt{7}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-10\sqrt{7}}{2*1}=\frac{30-10\sqrt{7}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+10\sqrt{7}}{2*1}=\frac{30+10\sqrt{7}}{2} $
| 63/g=9/4 | | 2d+10=-54 | | -12x+11=-11x-11 | | 14=9x+2−3x | | 16-(-t)=-45 | | 5+7=-6r+3r | | 12x-2=8x+34 | | .75x=20.80 | | 7d-3=14 | | t^2+30t-50=0 | | 2x-3=10x-5 | | -4x+9x-40=-10x+17 | | X+2X+x=23 | | |4x-9|-7=0 | | -4x-24=8 | | 36+1x=5x | | x-1/9=1/8 | | 2x-32=14 | | 3/2w=18 | | -2(x+4)=8x-3+x | | 1x+5/4=-4 | | 0.23(y-2)+0.20y=0.03y-0.30 | | -9+v=-5 | | -3x−5=16 | | -7=u | | -x-53=59-8x | | 2b+9/5=1.8-11/5 | | x(8x^2+24^2)=0 | | 11=-14x+6 | | w+5=-8 | | 4|3x-8|+6=17 | | 5x+(-3+x)=-20 |